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@veniew - Why Coordinated
Elying?

basalines

: : : . Wy e
* Enabling for science inquiries requiri n? large
* Single structure configurations have practical

limitations that may be mitigated by multi-
spacecraft paradigm

» Deployment, mass, size, other launch vehicle constraints
* Functional redundancy
* Replenishment
* | ead to potential cost savings
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VOCABULARY

COORDINATED FLYING



Vecabulary Associated with
Multiple Spacecraft

I
» Hierarchical specific vocabulary for

coordinated spacecraft
* Fleet |

* Constellation

* Formation Flying
* Coarse
* |ntermediate
* Precision

Definitions obtained from Merriam-Webster Collegiate Dictionary (http://
c.gp.cs.cmu.edu:5103/prog/webster or http://www.eb.com:180/)
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Pefinition of Fleet

3. fleet n 2: a group (as of ships, planes, or trucks) operated upder unified control
|

» A collection of spacecraft

Mixture of independent spacecraft and spacecrafit
arrangements |

Loosely related in function or high level mission while
performing various specific missions and purposes
Multiple missions can include spacecraft that spans ov
various times

Geometric pattern not required
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Spacecralt Fleet Example

e Shuttle Fleet |
* A collection of JPL deep space fleet that iqcl udes:
Rangers )\
Mariners
Surveyor
Viking
Voyagers
Magellan
Galileo
Mars Pathfinder
Cassini
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Pefinition of Constellation

con.stel.la.tion n 3: an assemblage collection, or gatherlng of related persons, qualities, or things.
- 4 : pattern, arrangement

* Anassembly or collection of multiple spacecraft for a
common purpose
* |none or more orbital planes, usually symmetric, for etarth orbiters
* |napattern or arrangement in deep space |
* Usually similar spacecraft

* “Open loop” arrangement control (current capability)

» S/C may have no or limited capabilities for GN& C information
cross linking (inter-spacecraft links) to control arrangement on-
board

» Controlstypically generated by ground (e.g. maintain orbital plan
and positions) or not at all

* Arrangements tend not to change significantly over
moderate time scales
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Iridium

Constellation Examples

NAVSTAR Global Positioni ng &/stem Satellites (24
: satellites/6 planes)

ﬁ Constellation (formerly Aries) (48/1

|CO (formerly Inmarsat-P) (10/2)

Teledesic (840/21)

Globalstar (48/8)

Odyssey (12/3)

Iridium (66/6)

Ellipso (10/2)

NMP GPS Array (16/1-4)
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PEjiniien of Formation Flying

for.ma.tion n 6: an arrangement of a body or group of personsin some prescribed manner or for a
particular purpose - for.mation.a g

* Anassembly or collection of multiple spacecraft in
an arrangement (orbit or pattern)

* Coarse Formation Flying %‘

* Beginnings of “Closed loop,” loosely coupled arrah‘g
control (current technology)

* S/C have no or limited capabilities for GN& C information cross
linking to control arrangement on-board |

* Arrangement may be controlled on board or from the ground
* Coarse coordination control accuracy

* Not separation distances or control knowledge

* Accuracy measured in kilometers

* Arrangements tend to change slowly over moderate time |
scales

* Typically dissimilar S/C

10

K. Lau, J. Guinn, 2/9/96



PEfinition of Formation Flying
(con’t)

* |Intermediate Formation Flying '

* “Closed loop,” moderately coupled arrangement control
(current technology) | r*
10N

* S/C have limited or full capabilities for GN& C infor
cross linking to control arrangement on-board

* Real time ground control is challenging

* Moderate coordination accuracy
* Accuracy measured in meters

* Arrangements and orientations tend to change moderately ov
time

* Typicaly similar spacecraft

K. Lau, J. Guinn, 2/9/96




PEfinition of Formation Flying
(con’t)

* Precision Formation Flying

* “Closed loop,” tightly coupled arrang#nent
control 5

» S/C have full capabilitiesfor GN&C informJi#
cross linking to control arrangement on-board

* Precision coordination accuracy
» Accuracy measured in centimeters or better

* Arrangements and orientations tend to change quickly ov
time

* Typically identical spacecraft
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Slimmany/ of Formation Flying
Definitions

Class Coupling | Control X-link Ex. Sensors
Accuracies Slmplarltl%

No/limited
Intermediate | Moderate [ 1 m-1km | Moderate
ISl Full

New Millennium Earth Orbiting
Mission 1: Land Imager (Coarse FF)

e Accuracy measured in many
kilometers

New Millennium Deep Space
Mission 3: New Millennium
Interferometer (Precision FF)

* Centimeter accuracy range

13 K. Lau, J. Guinn, 2/9/96



EOORDINATED FLYING



Alteonomous Coordinated
EVing Fechnology Roadmap

1996 2000 2005 Future

AUto-GN& C ‘ Fleet Control

TECH
CAPABILITIES R

DS-3
TOPSAT

EO-1

EXAMPLE TOPEX,
MISSIONS TPFO

PRINCIPLE

TECH. Auto-GN&C Coordinated Controls

Other Coordinated Flying Components & Technologies

Experiments | Science
15 K. Lau, J. Guinn, 2/9/96




Coordinated Flying
Challenges & Technologies

o Autonomous GN& C |
Autonomous formation controls g
ing

Absolute &/or relative formation sen
between spacecraft

* Position, velocity & attitude

| nter-spacecraft information coordination
Propulsion

Mission operations
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COORDINATED FLYING IN
EARTH ORBIT

Case Study: EO-1 Land Imager

‘
K. Lau, J. Guinn, 2/9/96



Autonomous Earth Orbiter Navigation
Overview

CONVENTIONAL APPROACH

L TDRSS

A

B g

(Laser Ranging)

w
\ ¥ Radio Tracking
(Range and Doppler)
Optical Tracking

Ground Based
Orbit Determination
and Maneuver Design

AUTONOMOUS APPROACH

) ** ’?TDRSS

Optical

s

Satellite-to-Satellite
Radio Tracking

On-Board Orbit
Determination and

Maneuver Design

Applications:

* Groundtrack Repeat Contol
* Formation Flying

* Constellation Maintenance
* Fleets

Benefits:

* No ground tracking
required for navigation

* Reduces ground operations

* Enables improved
efficiencies and lower
navigation operations costs

Joseph Guinn 2/9/96
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Propesed EO Autonomous
Eermmation Flying Missions

NEAR POLAR ORBIT MAINTAINED
AT 250 TO 300 km ALTITUDE

« Precision: relative control < 1meter
e Currently Deep Space Only \ |

* |ntermediate: relative control 1m tb 1km
* TOPSAT (SAR & Laser Topography) ﬂ

* Sagittarius (Omega)
* Coarse: relative control > 1km
EO-1 (Land Imaging)

GRACE (Gravity Recovery &
Atmospheric Change Experiment)

\agittarius - & Moisture Sounding)

4 K. Lau, J. Guinn, 2/9/96




New Millennium Program / Earth Orbit-1 Mission
Mission Description

Key Objectives:
*Demonstrate advanced land hyperspectral imager
’? * Autonomous Formation flying with LANDSAT-7
for image co-registation/validation

S GPS
S Orbit:

A FAltitude = 705 km
P @ * Circular

. * Sun-synchronous, Inclination = 98.2°

7 * Longitude of Ascending Node Offset 0.5°
* True Anomaly Offset 8°
LANDSAT-7

Mission Parameters:
*Early 1999 Launch
2 Minutes * Launch Vehicle LLV-1

~1000 km * Mo ;
| [ -8 degrees Mission Duration 18 months

TDRSS

2 Minutes

~0.5 degrees
Earth Rotation

Joseph Guinn 2/9/96
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New Millennium Program / Earth Orbit-1 Mission
Autonomous Navigation Elements

’? GPS

\TDRSS

- _’-
- LANDSAT-7

-~

DIt Maneuver
Determination Implementation

Or.bit_ W Maneuver Maneuver
Prediction Decision Design

?

Joseph Guinn 2/9/96
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COORDINATED FLYING
INIDEEP SPACE

Case Study: DS-3 New Millennium
Interferometer




New Millennium
Interferometer

NEW MILLENNIUM INTERFEROMETER

STARLIGHT
PATH

COMBINER
SPACECRAFT

KOG PATH

STARLIGHT AND
METROLOGY

w
*BASELINE

s METROLOGY PATH =
COLLECTOR COLLECTOR

SPACECRAFT SPACECRAFT
" —Oltolkm —————————»
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NIVIIEMIssion Description

* Heliocentric (SIRTF) orbit

* ~0.1 Au away from Earth at the end of 6 months
mission life

* Navigation not essential | th

i

* Spacecraft approximately 1.7 m per sidec
e 3 axisstabilized
* Body mounted solar array, always sun pointed

* Approx. 150 kg wet mass per collector, 250 kg wet
mass combiner

* Approx. 16 kg wet mass - cold gas assumed presently

K. Lau, J. Guinn, 2/9/96



NIMIFSpecial Reqguirements

* G&C

e 100m to 1km baselines
e +1 cm relative ranging
e +1 arcminute relative orientation
» +0.1 mm/sec relative velocity measurements

* Formation initialization and maintenance
* Formation maneuvers
* |nter-spacecraft communications
e Up to 500 khits/sec
* Propulsion
* Limited fuel mass
* Perform potential large slews for formation
Initialization and imaging scenarios
* Provide small thrust for formation maintenance

25 K. Lau, J. Guinn, 2/9/96



NMIFChallenges

Perform formation flying autonomously
» Cannot control formation from ground operations
* |nitialization and maintenance
* Optimize control architecture
* Formation maneuvers

* Collision avoidance

Perform G& C sensing requirements with low mass, I er
power, 4p steradian sensor(s)

Perform Communications requirements with RF modem
radio ethernet

Perform Propulsion requirements with small thrusters wit
high specific impulses
Perform Mission Operations at |arge distances

26 K. Lau, J. Guinn, 2/9/96




NMIFTfechnologies

* Autonomous formation flying controls
» Formation initialization and maintenance
* Initialize from asmall cluster
Initialize from random distributed pos;tlons
Coordinated pointing
Maintain formation during maneuvers
Reconfigurability & adaptability
* Controls architecture
* Distributed or centralized
» System-level fault isolation, recovery & prevent|on

* Formation maneuvers
* Dimensional changes
* Rigid body rotations
e Efficient interferometer maneuvers
* Center of mass of formation
* Pivot around S/C with least fuel
* Collision avoidance
* Avoid collisions upon separation from launcher
* Avoid collisions du2r7i ng fault conditions

K. Lau, J. Guinn, 2/9/96




NIVIElrechnologies (con’t)

* Formation Sensing

* Autonomous formation flying GN& C sensor (AFF)
* GPS transceiver with attitude determination capabilities
* Provide coarse formation ranges and attitudes (r‘él ative)
* Does not use Earth’s NAVSTAR GPS satellite signal ﬂg deep space
ﬂes

* Multiple antennas will satisfy 4p steradian coverage
* Kilometric Optical Gyro (KOG)

* Laser gyro formed by 3 spacecraft

* Provide rotation sensing for formation

* Optical Metrology
* Precision range sensor

transmit

transmit

K. Lau, J. Guinn, 2/9/96



NIIFTFechnologies (con’t)

* RF multipath elimination

» Accuracy improvement for the AFF
* Applicable for GPS receivers for Earth Orbiters j‘

* A promising new technique for GPS receivers
on “Seismic Deconvolution” recently developec

» Capable of eliminating multipath down to receiver noi
floor

* Further investigation into using Deconvolution to lower |

noise floor
Direct Path
Idealized Antenna Pattern
Indirect
- Path Reflective Object

K. Lau, J. Guinn, 2/9/96




NIVIIEllechnologies (con’t)

* |nter-spacecraft network information coordination

* High data rate inter-spacecraft communications
* RF modem/UHF transceivers
* Radio ethernet
* AFF
* Encode onto AFF signals
* High performance computing

* Management of large parallel data sets
RF Modem

K. Lau, J. Guinn, 2/9/96




NMIF Technologies (con’t)

* Small thrusters
e 12 per NMI spacecraft baselined
 Coldgas(N )thru ﬂ baselined
e Similar to those for j{ T Flyby
e 45mN

J Lowl

* PulsePl asma Thrusters (PPT)

* 700 pN per pulse, upto 6 Hz

* Highlg,

* Requires higher power

e Currently addressing contaminatio
issues |

e < » Optical contamination

' ' « EMI/EMC

K. Lau, J. Guinn, 2/9/96



NiViISliechnologies (con’t)

* New paradigm in NMI Mission Operations:
Autonomy Remote Agent 1

* NMI mission operations cannot be performed ﬁh ough
traditional methods ‘
* Large distances, in situ operations T
» Autonomy Remote Agent TN
» Model driven behavior
* Automatic reasoning Superstructure

* 3 components

* Planning & Scheduling
* Resource scheduling & constraint management without constraint viola
e Smart Executive
* Event-driven plan execution & run-time decision making for real-time
response
* Mode Identification Recovery
* Deduce hidden states (failure) from sensors & plan recovery actions

Spacecraft

32 K. Lau, J. Guinn, 2/9/96




@iger Proposed DS Missions

* Precision Formation Flying - accuracy measured in cm
* MUSIC (Multiple Spacecraft Interferometer C?gstellation)
* EXNPS (Exploration of Neighboring Planetary Syste
* EMM (Earth Mapping Mission)
* Coarse Formation Flying -
accuracy measured in km

* ALFA (Astronomica Low
Freguency Array)

K. Lau, J. Guinn, 2/9/96



TESTING M

COORDINATED FLYINC




EXISting Coordinated Flying
Testbeds

Al - Opticaly Linked Spacecraft Testbed

* Dr. Fred Hadaegh, Dr. Randy Bartrﬂﬂh Prof. Paul
Wang (UCLA) 1

* JPL DRDF 1994

¢ 3 small air bearing pucks with optical sensii
capabilities
e Commotion Laboratory
* Dr. Tony Lewis (UCLA)
* Coordinated wheeled robots
e Stanford GPS Laboratory
* Prof. Jonathan How (Stanford University)

» 3large air bearing vehicles with GPS sensing
capabilities

35 K. Lau, J. Guinn, 2/9/96



Piepesed NIV Formation Flying
estbead

SN S

Lightweight “ Spacecraft” g \
(with multiple patch antennas)

_—-———__-r—_‘_
RF Metrology Beams
(multiple beams)
Battery Powered, Radio Controlled
6 Degrees of Freedom Rovers

(includes AFF, GPS)

Dry Lake Bed or Other Large Flat Surface
(Santa Anita Race Track Parking Lot?)

K. Lau, J. Guinn, 2/9/96



VISIONS

» Autonomous Constellation control & operations
* Autonomous Fleet control & operatiaﬂps

K. Lau, J. Guinn, 2/9/96
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